Hormone-induced repression of genes requires BRG1-mediated H1.2 deposition at target promoters.
نویسندگان
چکیده
Eukaryotic gene regulation is associated with changes in chromatin compaction that modulate access to DNA regulatory sequences relevant for transcriptional activation or repression. Although much is known about the mechanism of chromatin remodeling in hormonal gene activation, how repression is accomplished is much less understood. Here we report that in breast cancer cells, ligand-activated progesterone receptor (PR) is directly recruited to transcriptionally repressed genes involved in cell proliferation along with the kinases ERK1/2 and MSK1. PR recruits BRG1 associated with the HP1γ-LSD1 complex repressor complex, which is further anchored via binding of HP1γ to the H3K9me3 signal deposited by SUV39H2. In contrast to what is observed during gene activation, only BRG1 and not the BAF complex is recruited to repressed promoters, likely due to local enrichment of the pioneer factor FOXA1. BRG1 participates in gene repression by interacting with H1.2, facilitating its deposition and stabilizing nucleosome positioning around the transcription start site. Our results uncover a mechanism of hormone-dependent transcriptional repression and a novel role for BRG1 in progestin regulation of breast cancer cell growth.
منابع مشابه
Glucocorticoid receptor-mediated cis-repression of osteogenic genes requires BRM-SWI/SNF☆
Glucocorticoids are an effective therapy for a variety of severe inflammatory and autoimmune disorders; however, the therapeutic use of glucocorticoids is severely limited by their negative side effects, particularly on osteogenesis. Glucocorticoids regulate transcription by binding to the glucocorticoid receptor (GR), which then binds the promoters of target genes to induce either activation o...
متن کاملSWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation.
Brahma (Brm) and brahma-related gene-1 (Brg1) are mammalian homologues of SWI/SNF chromatin-remodeling factor subunits that can regulate both transcriptional activation and repression. Both Brg1 and Brm are mutated or deleted in numerous cancer cell lines, leading to the altered expression of genes that influence cell proliferation and metastasis. Here, we find that the promoters of two such ge...
متن کاملA methylation-mediator complex in hormone signaling.
The recruitment of coactivators by nuclear hormone receptors (NRs) promotes transcription by subverting chromatin-mediated repression. Although the histone methylation enzyme CARM1 and an ATP-remodeling complex have been individually implicated in nuclear receptor-dependent transcription, neither a functional nor mechanistic linkage between these systems has been identified. In the process of p...
متن کاملLinker Histone H1.2 Directs Genome-wide Chromatin Association of the Retinoblastoma Tumor Suppressor Protein and Facilitates Its Function
The retinoblastoma tumor suppressor protein pRb is a master regulator of cellular proliferation, principally through interaction with E2F and regulation of E2F target genes. Here, we describe the H1.2 linker histone as a major pRb interaction partner. We establish that H1.2 and pRb are found in a chromatin-bound complex on diverse E2F target genes. Interrogating the global influence of H1.2 on ...
متن کاملThe BRG1 transcriptional coregulator
The packaging of genomic DNA into chromatin, often viewed as an impediment to the transcription process, plays a fundamental role in the regulation of gene expression. Chromatin remodeling proteins have been shown to alter local chromatin structure and facilitate recruitment of essential factors required for transcription. Brahma-related gene-1 (BRG1), the central catalytic subunit of numerous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 35 16 شماره
صفحات -
تاریخ انتشار 2016